
34 The Delphi Magazine Issue 59

Arrrgh Essay
It’s back to school to learn how to do
multiplication and division for RSA

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

I unlocked the airport baggage
locker. The key had arrived in the

mail with a terse note detailing how
to find this particular locker at this
particular airport. Inside the locker
was a portable tape player with a
tape already mounted. I pressed
play and the tape started.

‘Good morning, Julian. One ques-
tion I’ve always had is how the RSA
encryption algorithm works. You
get these two keys, one private and
one public, and miraculously you
can encrypt with one of them and
decrypt with the other. It’s like
magic. It is magic! Just how does it
work? Your mission, should you
choose to accept it, is to explain
the RSA public key algorithm in
terms I can understand. This tape
will self-destruct in 5 seconds.
Good luck, Julian.’

I recognized the voice and into-
nation of Our Esteemed Editor,
even though it sounded like he was
trying to disguise it with a handker-
chief. Either that or he was using
those cheap factory-surplus cas-
settes again. Sweat started break-
ing out on my forehead: this was
obviously a high priority mission,
something that I couldn’t ignore.
My column was on the line.

The tape started fizzing and
emitting smoke. I slammed the
locker door shut before the cops
came over.

Public Key Encryption
RSA, then. Let’s start by explaining
public key (or asymmetric key)
algorithms and why they’re impor-
tant in the grand scheme of things.
As I explained last month, private
key algorithms like DES suffer from
a vexing problem. Alice and Bob,
our two encryption protagonists,
must agree on and exchange a key
before they can communicate with
each other in a secure manner. If
they can meet face-to-face, then
they can just decide on the private
key there and then. If they can’t
meet face-to-face, how can they

exchange a key without their
eavesdropping enemy, Eve, listen-
ing in? As I explained last time, if
Eve manages to get hold of the key
as Alice sends it to Bob, then she
can send Bob a dummy key
instead. At that point, Eve is in con-
trol, she can intercept encrypted
messages from Alice, decrypt
them, then either send the original
or a fake message to Bob,
encrypted with her dummy key.
And vice-versa. Alice and Bob have
no way of knowing that this is
happening.

So what can Alice and Bob do if
they are separated and cannot
physically meet? Alice needs a way
of encrypting the secret key so that
she can send it to Bob, and he
needs to be able to decrypt it
safely. Of course, Eve cannot be
able to decrypt this key exchange
message. Alice can’t use a private
key encryption algorithm, other-
wise it’s just the same problem
over again: how do Alice and Bob
agree on the private key used to
encrypt and exchange the message
with the private key? What Alice
and Bob use instead is public key
cryptography. She encrypts the
message holding the secret key
with Bob’s public key. He’s pub-
lished this key so that anyone can
send him a message that only he
can decrypt. When Bob gets a
message encrypted with his public
key, he decrypts it with the match-
ing secret key that only he knows.
It is impossible (or, rather, very,
very hard) to deduce Bob’s secret
key from his well-known public
key, so Eve is stuck. Once Alice has
sent the encrypted message to Bob
and he’s decrypted it, they can
ignore the asymmetric algorithm
and start using the private key
algorithm again, secure in the
knowledge that they have
bamboozled Eve again.

Sounds fabulous, but how does it
work? What is the relationship
between the public and secret key

that gives them the ability to use
this clever scheme? Why is it
hard-to-impossible to calculate
the secret key given the public
key? And why bother with private
key algorithms at all, given this
miraculous public key algorithm?

The underpinning of the RSA
algorithm (named after its inven-
tors: Ron Rivest, Adi Shamir, and
Leonard Adleman) is a branch of
mathematics known as modulo
arithmetic. Before we delve into
the mathematics and the imple-
mentation of the algorithm, let us
see an example.

Simple RSA Example
Bob’s public key is expressed as
two numbers, n and e, known as
the modulus and the exponent.
We’ll use some small numbers to
illustrate what’s going on, such as
n=437 and e=17 (in reality n is a
number with about 155 decimal
digits, not three). Don’t worry
about where these numbers come
from yet. To encrypt, Alice takes
her message and converts it into
numbers. Each of the numbers
that she chooses must be less than
437. Suppose the message she
wanted to send was the password
‘SECRET’. One method for her to
encode it as decimal numbers
would be to take the ordinal value
of the ASCII characters: 53, 45, 43,
52, 45, and 54. For each of these
numbers, x, she would calculate
the encrypted value, y, using the
following formula: y = xe mod n;
that is, take x, raise it to the power
e, and calculate the remainder
after dividing by n. A pretty nasty
calculation to do by hand. For
example, taking the first value, 53,

July 2000 The Delphi Magazine 35

raising it to the power 17 is a
30-digit number, which equals 318
modulo 437 (take this from me!).
The other values will get converted
to 68, 99, 357, 68, and 82.

She then sends these six num-
bers to Bob. Bob takes out his
secret key. This is expressed as
two numbers again, this time
known as n and d. n is the same
number that Alice used (the modu-
lus), 437. d, however, is different
than e although it is an exponent
again. Its value is 233 and it’s the
really secret part of Bob’s secret
key. For each of the encrypted
numbers, y, Bob calculates the
original x by using the formula: x =
yd mod n. Using the first value, 318,
we raise it to the power 233, giving
a 584-digit number, which happens
to be 53 modulo 437 (again, take
this from me!). Wow, it’s the origi-
nal value again!

I can see that some of you are
shaking your heads. What I’ve just
done seems just as magical as
before, and now you’re taking a lot
on trust as well. How the heck did I
calculate the remainder of 318 to
the power 233 when divided by
437? I can assure you I didn’t calcu-
late the 584-digit intermediate
result! And where did I come up
with the values for n, e, and d?

At this point, there’s nothing for
it but to introduce some mathe-
matics. First I’ll show some identi-
ties for modulo arithmetic (the
proof of which is beyond this
article: indeed I only learnt the var-
ious theorems to prove them in the
first year of my maths degree).
Figure 1 has the identities we shall
need. In particular take note of the
first identity. It says, in plain Eng-
lish, that if you take two numbers,
multiply them and then take the
modulus with respect to n, you’ll
get the same answer as if you’d
taken the individual numbers,
taken their modulus, multiplied
them and then taken the modulus
once again. And this is how I did
those large calculations; for
example, 318 to the power of 233,
modulus 437. At every multiplica-
tion, you take the modulus; the
intermediary results can all be
stored in a longint, so you just keep
on multiplying the intermediary

result by 318 and finding the
remainder after dividing by 437.

Easy Exponentiation
In fact, there is another optimiza-
tion we can do: an algorithm known
as the binary square and multiply
method. Suppose you wanted to
work out 5 to the power 8. The sim-
plistic way is to take the 5 and mul-
tiply it by 5 seven more times
(usually coding it as a little loop):

58 = 5*5*5*5*5*5*5*5

In other words, we’d be performing
7 multiplications. Doesn’t seem too
bad, but it’s likely we’d be calculat-
ing a larger power with RSA (for
example, in our simple illustration
we had an exponent of 233 at one
point). Is there anything we can do
to reduce the number of multiplica-
tions? Yes: for an exponent of 8:
square the 5, square the result, and
then square that second result. In
other words we’d be calculating
((52)2)2. This takes 3 multiplica-
tions: the original square, the
square of that result and then the
square of that result. In fact, any
exponent that is a power of 2 can
be broken down in the same way;
for example 516 would require 4 suc-
cessive squaring operations. (If
you have a calculator with an x2

key, calculating yx when x is a
power of 2 means pressing that key
the right number of times.)

Well that’s all fine and dandy, but
what happens if the exponent is
not so obliging, and is not a power
of 2? Well, we rewrite it so that it
becomes a series of multiplica-
tions of intermediary results that
have exponents that are powers of
2. For example, we can rewrite 57 as
54 * 52 * 5 and we only have to do 5
multiplications instead of 6 origi-
nally (OK, I know it doesn’t sound
like an improvement with these
small numbers, but bear with me).

In fact, we can make another
optimization and remove another
multiplication:

57 = (52 * 5)2 * 5

A total of four multiplications. How
do we take advantage of this in
code? How do we know how to
split the exponent 7 into a 4, a 2,
and a 1? Well, this is nothing more
than the binary representation of
7, with each clear bit meaning
‘square’ and each set bit ‘square,
then multiply by the number’. We
start off with the most significant
bit of the exponent. This gives rise
to the implementation of the
binary square and multiply algo-
rithm shown in Listing 1. (A note
for those readers who don’t have
Delphi 5: all the code this month
was written using Delphi 5; I’m
afraid I didn’t have time to try it
with other compilers, or to convert
it to Delphi 1.) Notice that this list-
ing actually shows the algorithm
using modulo arithmetic, and this
was how I really calculated that
5317 mod 437 equals 318, and 318233

mod 437 equals 53.
But where did I get the numbers

437, 17 and 233? More mathemat-
ics. 437 is the product of two
primes: 19 and 23 (I can see some
of you are waking up here: this is
something you’ve heard about
with RSA). The two primes are
usually known in the computer
science trade as p and q. The
number 17 is entirely arbitrary but
it cannot divide p-1 (18) or q-1 (22).
The best bet is a prime again; one
of the smallest that satisfies this
condition (I could equally well
have chosen 5 or 7, for example).
The reason we choose one of the
smallest is that it is going to be part
of our public key, and we’re being
nice to people who want to send us
messages: this is the exponent e
(meaning encrypt) with which
they’ll be raising the numbers that
they’re encoding. The smaller the
better for them. We now calculate
d (meaning decrypt) such that:

(a*b) mod n = ((a mod n) * (b mod n)) mod n

Fermat's Little Theorem:
if p is prime and 1 < a < p-1 then a^p-1 mod p = 1

➤ Figure 1: Modulo arithmetic
theorems required for RSA.

36 The Delphi Magazine Issue 59

(d*e) mod (p-1) (q-1) = 1

For our simple example, we can
work out that 233 * 17 mod (18*22)
equals 1, and so d = 233.

Yet more magic, eh? Where does
this other modulus come from?
Why does it work?

Suppose we start out with a
plaintext number x and encode it
to a number y:.

y = xe mod n

Now decode this mess and see
what falls out. Remember, we want
to calculate yd mod n.

yd mod n
= (xe mod n)d mod n
= xed mod n

Now what? This doesn’t seem to
help us, mainly because we need a
further piece of the mathematics
puzzle. Enter The Chinese Remain-
der Theorem and another couple of
theorems, one from Leonard Euler
(pronounced Oiler) and another
from Pierre de Fermat (pro-
nounced Fairmah). I’m not going to
bother using them here; suffice it
to say that, using these results, we
can prove that xed mod n is equal to
x mod n for all possible values of x if
we know that n = pq and de mod
(p-1)(q-1) = 1. Any mathematics
book can prove the equality.
Anyway, it is possible to show that
the basic encryption and
decryption work.

Wide Word Arithmetic
By now you may have realized that
we will need to have some chunky

large integer arithmetic routines.
The key for RSA encryption is
usually expressed as the number of
bits in its modulus n. The standard
these days is 512 bits at a
minimum. We’re going to need to
multiply two 512-bit numbers to
produce a 1,024-bit number, divide
a 1,024-bit number by a 512-bit
number to give a 512-bit number
and a 512-bit remainder. So, for fun,
let’s take a detour now into Algo-
rithms Alfresco Wide Word Arithme-
tic (AAWWA, the scream you make
when you try and write the code
the first time). It’s instructive and
we’ll definitely need it in a moment.

We’ll first declare the Wide Word
type: TaaWideWord. This will be a
class with which we can do 1,024-
bit unsigned integer arithmetic.
For ease of computation and
understanding, at the expense of
efficiency, I’ll make it an array of
bytes (the alternative might be an
array of words or longwords)
because it makes the arithmetic
much easier: I can use longwords
throughout. I’ll follow the Intel
standard and make the least signifi-
cant byte the first byte in the array,

and the most significant byte the
last byte. In the following discus-
sion I shall call the individual bytes
the digits of the number; as you can
see, each digit has 256 possible
values, like decimal digits have 10
possible values, 0 to 9.

The first and easiest arithmetic
operation is addition, adding two
Wide Words together. This is just
like you did it at school. Starting
from the least significant place,
add the digits from the two num-
bers together, and make sure you
carry overflows onto the next
place. Here, of course, an overflow
is the part of the intermediary
result greater than 256. Listing 2
has this simple routine. (The
DigitCount property is used to
maintain the number of significant
digits in the Wide Word.)

Subtraction is a little more
involved: instead of carries you
have borrows. Listing 3 shows this
implementation of Wide Word
school arithmetic. At this coding
rate we’ll be finished before
bedtime!

procedure AddPrim(x, y : PByteArray; aCount : integer);
var
Temp : LongWord;
Carry : LongWord;
i : integer;

begin
Carry := 0;
for i := 0 to pred(aCount) do begin
Temp := x^[i] + y^[i] + Carry;
x^[i] := Temp mod 256;
Carry := Temp div 256;

end;
x^[aCount] := Carry;

end;
procedure TaaWideWord.Add(x : TaaWideWord);
begin
FDigitCount := MaxI(DigitCount, x.DigitCount);
AddPrim(Digits, x.Digits, DigitCount);
if (Digits^[DigitCount] <> 0) then
inc(FDigitCount);

if (DigitCount > 128) then begin
SetToMax;
raise Exception.Create('TaaWideWord.Add: overflow')

end;
end;

➤ Listing 2: Wide Word addition.

function PowerAndMod(a, e, n : integer) : integer;
{-calculate a^n mod n}
var
Exponent : integer;
BitCount : integer;
i : integer;

begin
{reverse the bits in e and put them in Exponent}
Exponent := 0;
for i := 1 to 32 do begin
if Odd(e) then
Exponent := (Exponent shl 1) or 1

else
Exponent := (Exponent shl 1);

e := e shr 1;
end;
{pop off clear bits until reach first set bit; this will
be the most significant bit of the original exponent}

BitCount := 32;
while not Odd(Exponent) do begin
Exponent := Exponent shr 1;
dec(BitCount);

end;
{OK, we're ready for the loop}
Result := 1;
{for all the bits in the original exponent...}
for i := pred(BitCount) downto 0 do begin
{sqaure the intermediate result}
Result := (Result * Result) mod n;
{if the current bit is set, multiply by a}
if Odd(Exponent) then
Result := (Result * a) mod n;

Exponent := Exponent shr 1;
end;

end;

➤ Listing 1: Binary square and
multiply algorithm.

38 The Delphi Magazine Issue 59

Multiplication, then. If your
school was like mine you learnt to
do it like this:

654
321 *

——————
654

1308
1962
——————
209934

Well, in Wide Word School, we do it
the same way, except that this time
we don’t keep the individual multi-
plication sub-results ready to add
them all together at the end; we do
the addition immediately after the
multiplication of the individual
digits.

If you follow through the routine
in Listing 4 with the numbers in our
example (the Y number is 654, the X
number is 321) you’ll see the multi-
plication result being built up as
we go along:

1*4: 000004
1*5: 000054
1*6: 000654
2*4: 000734
2*5: 001734
2*6: 013734
3*4: 014934
3*5: 029934
3*6: 209934

In Wide Word School, coming
across the next operation is when

most pupils think about becoming
accountants instead of program-
mers. The very word is enough to
strike terror in the heart of the
most fearless student: division. It
pretty well did for me, too.

Way back when we learnt it like
this:

00000000654

321 0209944
01926
001734
001605
0001294
0001284
0000010

In other words, 209,944 divided by
321 is 654 with remainder 10. But,
just think about the actual
mechanics of it for a moment. In
the first step, we have to guess how
many times 321 goes into 2,099. Get
it wrong, we then have to incre-
ment or decrement our guess until
we have it right. And it’s still not
over! We then have to guess how
many times 321 goes into 1,734,
and so on. Each step by laborious
step requires a guess and some
refinement until we have it right
when subtracting the new quotient
digit times the divisor from the
intermediate value is less than the
divisor. Nasty.

How can we implement an
algorithm that has this element of
‘guessing’? Use random numbers,
perhaps? Actually, it turns out to

be a little more structured than
that. Firstly we need to make sure
that the most significant digit of
the divisor is 5 or more. If it isn’t,
multiply the divisor by 2 (maybe
more than once) until it is. Double
the dividend the same number of
times. The quotient of this new
division will be the same as the
original; however, the division will
have been simplified to a large
degree. In our case, we need to
double the divisor and the
dividend once to make the most
significant digit of the divisor
greater then or equal to 5. We are
now dividing 419,888 by 642.

We can now make our guess to
the quotient digit as follows. Take
the most significant digit of the
divisor (in our case 6). Take the
two most significant digits of the
dividend (41). Divide to give 6
(notice that this division is nothing
more than knowing the multiplica-
tion tables of the digits). If the
answer happened to be greater
than 9, the largest digit, we force
the answer to 9. This is our guess
at the first digit of the quotient.
Amazingly enough, it can be
proven that, if the most significant
digit of the divisor is greater than
5, the actual quotient digit we just
calculated is either this one, call it
q, or it will be q-1, or maybe q-2 at a
pinch. That’s it. Period. Interested
readers can check out Knuth’s The
Art of Computer Programming
Volume II for the proof. We see that
6 is the correct answer. At this
point the division looks like this:

6

642 419888
3852
3468

??

We do the same thing: divide 6 into
34 to make 5. It’s correct again:

65

642 419888
3852
003468
003210
0002588

?

The final ‘guess’ is the result of
dividing 25 by 6, which is 4. Correct
again. The final division is:

function SubtractPrim(x, y : PByteArray; aCount : integer) : integer;
var
Temp : integer;
Borrow : integer;
i : integer;

begin
Borrow := 0;
for i := 0 to pred(aCount) do begin
Temp := x^[i] - (y^[i] + Borrow);
if (Temp < 0) then begin
inc(Temp, 256);
Borrow := 1;

end else
Borrow := 0;

x^[i] := Temp;
end;
Result := Borrow;

end;
procedure TaaWideWord.Subtract(x : TaaWideWord);
var Borrow : integer;
begin
if (DigitCount < x.DigitCount) then
Borrow := 1

else
Borrow := SubtractPrim(Digits, x.Digits, DigitCount);

if (Borrow <> 0) then
raise Exception.Create('TaaWideWord.Subtract: negative result');

wwRecalcDigitCount;
end;

➤ Listing 3: Wide Word subtraction.

July 2000 The Delphi Magazine 39

00000000654

642 419888
3852
003468
003210
0002588
0002568

20

But what about the remainder?
Well, we take the remainder from
this division and halve it the
number of times we had to double
the original divisor. We doubled
once, and so we halve the remain-
der of 20 once to give 10. Ta-da!

In Wide Word School though
we’re not using decimal arithmetic:
our digits have 256 different possi-
ble values. No problem, we do
exactly the same thing. First
double the divisor until the most
significant digit (ie, byte) is greater
than or equal to 128. Double the
dividend the same number of
times. To calculate the quotient
digit, we divide the most signifi-
cant byte of the divisor into the
word value formed from the two
most significant bytes of the divi-
dend. (The theorem above still
applies even though the radix has
changed from 10 to 256: we are
guaranteed to only check at most
three digits, q, q-1, or q-2, for the
current quotient digit).

Proceed like this until we have a
remainder less than the divisor. At
this point we have the correct quo-
tient, but the remainder may need
some work. Halve this remainder

the same number of times as we
originally doubled the divisor, and
we can return this resulting value
as the remainder of the original
division. Listing 5 shows the full
implementation. Despite having to
create three temporaries on the
heap, the routine is fairly nippy.

Finding Primes
RSA boils down to first finding two
large primes p and q (we select
primes expressible in 256 bits),
multiplying them together to give n
(512 bits), finding an e such that it
does not divide either (p-1) or
(q-1), and then calculating the d
that goes with the e. At that point
we publish n (=p*q) and e and wait
for the encrypted messages to
come flooding in, when we can
decrypt them with n and d. We can,
if we want, throw away our p and q
since they’re not needed any more.
Simple, huh?

Well, no, not really. How on earth
do we find primes of length 256
bits? This is not exactly going to be
the same as testing that 1,021 is a
prime (which is a mere 10-bit
number). Recall that Fermat’s
Little Theorem (as it’s usually
known) tells us that ap - 1 mod p = 1
for a prime modulus p and for any a
between 1 and (p-1). So, if we take a
random number between 1 and p-1,
where p is our supposed prime
number (note that we first make
sure that p is odd!), raise it to the
power of (p-1), calculate the
remainder after dividing by p, then
we can conclude that p is not prime

(is composite) if the answer is not
1. If the answer is 1, then we could
have a prime, or we could have
been unlucky and just hit a value
that just works for that p. We can
then try again, and again, and again
for a while with different initial
random numbers. If we continually
calculate the answer 1, it becomes
more and more likely that we have
a prime number. This process is
known as probabilistic primality
testing. It does not explicitly prove
that a given number is prime, but
we can reduce the probability that
it is composite to an arbitrarily
small value after several tests.

If Fermat’s Little Theorem
shows our chosen p is composite,
we try p+2 and then test p+4, and
so on. According to the Prime
Number Theorem (the number of
primes less than n can be approxi-
mated by n/ln(n)), we are assured
of hitting upon a prime number
fairly quickly. Also the Prime
Number Theorem tells us that the
number of 256-bit primes is
extremely large (being 2247, a 75-
digit number) so it’s not likely that
we’ll hit upon a prime number that
someone’s seen before.

Unfortunately, although an
extremely powerful result,
Fermat’s Little Theorem does not
tell us that if an -1 mod n = 1 for all a
then n is prime (there is a series of
composite numbers, known as
Carmichael numbers, where this

procedure MultiplyPrim(x, y : PByteArray; var aXCount :
integer; aYCount : integer);

var
InxX : integer;
InxY : integer;
MaxX : integer;
Carry : LongWord;
Temp : LongWord;
Result : array [0..128] of byte;

begin
{initialize the result}
FillChar(Result, sizeof(Result), 0);
{if either x or y had no digits it was zero;
answer is zero}
if (aXCount = 0) or (aYCount = 0) then begin
Move(Result, x^, sizeof(Result));
aXCount := 0;
Exit;

end;
{for every Y digit we shall multiply by all the X digits}
MaxX := aXCount;
for InxY := 0 to pred(aYCount) do begin
{if the Y digit is zero there'll be nothing to do in
this loop, so only do work if it is non-zero}

if (y[InxY] <> 0) then begin
{start off with a carry of zero}
Carry := 0;
{for each X digit, we multiply it with the current Y

digit, add in the carry from the previous step, and

add the current value of the result digit}
for InxX := 0 to pred(MaxX) do begin
Temp := (LongWord(x[InxX]) * y[InxY]) +
Result[InxX + InxY] + Carry;

{strip off the carry and set the result digit}
Result[InxX + InxY] := Temp mod 256;
Carry := Temp div 256;

end;
{make sure that any remaining carry is saved}
Result[InxY + MaxX] := Carry;

end;
end;
{return the answer}
Move(Result, x^, sizeof(Result));
{return the new number of digits}
inc(MaxX, aYCount);
while (x^[pred(MaxX)] = 0) do
dec(MaxX);

aXCount := MaxX;
end;
procedure TaaWideWord.Multiply(x : TaaWideWord);
begin
if ((DigitCount + x.DigitCount) > 128) then begin
SetToMax;
raise Exception.Create('TaaWideWord.Multiply: overflow');

end;
MultiplyPrim(Digits, x.Digits, FDigitCount, x.DigitCount);

end;

➤ Listing 4:
Wide Word multiplication.

40 The Delphi Magazine Issue 59

property is true; the first such is
561 = 3*11*17). So we could have
found a Carmichael number with
the above algorithm, and that is
composite by definition. How can
we remove the possibility that we
latch onto a Carmichael number, a
number that masquerades as a
prime number, at least as far as
Fermat is concerned?

Enter the Miller-Rabin algorithm.
This algorithm is a variant on the
probabilistic primality testing
algorithm I’ve just given, except
that it makes another test in each
loop. Again it tries several values of
a to apply to Fermat’s Theorem.
The extra test it makes is to see
whether a non-trivial square root
of 1 is ever found (the trivial square
roots of 1 modulus p are either 1 or
p-1). (There’s another theorem
which states that if x2 mod p = 1 and
p is prime, then x=1 or p-1.) So if we
find in our tests an x such that x is
neither 1 nor p-1 and yet x2 mod p =
1 then obviously p is composite. An
example using the first Carmichael
number 561 is 67: 672 mod 561 is 1.

Listing 6 shows this remarkable
algorithm. It first calculates a
256-bit random number by using
the standard Random procedure,
and makes sure that it is odd by
setting the least significant bit. It
then sets the most significant bit to
ensure that it is a proper 256-bit
number. At that point, we start into
the primality testing loop. We gen-
erate a random 255-bit odd number
and run this through Fermat’s The-
orem together with a test for a
non-trivial square root of 1 (this
latter part is done by the
wwIsWitness method: we’re testing
to see if a is a witness to p being
composite). And that is that.

For those of you who are won-
dering, this routine is pretty slow.
The first few times I ran it, I had to
add debugging writeln statements
just to make sure I hadn’t entered
an infinite loop. It’s dreadful. On
my 550MHz machine, it takes about
7 seconds to calculate and test a
256-bit prime. Nasty. Luckily
though, we don’t have to do this all
that often. In fact, for a single RSA
key that we can use again and
again, we only have to calculate

two primes. So, who cares if it
takes a good 15 seconds? Once it’s
done, it’s done.

Calculating Exponents
So, what’s next on the RSA front?
Calculating e, that’s what. Pretty
easy, this one. Try dividing (p-1)
and (q-1) by 3, and then by 5, and
then by 7, etc, until we reach a
small prime that leaves a remain-
der for both divisions. We can do
this one in our sleep. However, the
standard RSA key generation algo-
rithm always sets e to 3 and then
generates p and q such that both
(p-1) and (q-1) are not multiples of
3. This means that you won’t suffer
from the small probability that our
sequence of possible e values con-
tinues for some long series of
primes. Why do it this way?

It turns out that testing a binary
number for division by 3 is a
simple affair, just as it is for deci-
mal numbers. In the latter case, we
add up all the digits in the number
we’re testing. Add up all the digits
in the number thus produced, and
continue like this, adding up the
digits in our intermediate results,

procedure TaaWideWord.Divide(x : TaaWideWord;
aRem : TaaWideWord);

var
Divisor, Dividend, Test : TaaWideWord;
TestCompare : integer;
InxQ, InxX, Factor : integer;
SigDigit : byte;
q : longint;

begin
{first there's some code to get rid of the easy cases...}
..omitted code..
{if we reach this point we actually have to do some work:
the dividend is greater than the divisor, neither is
zero, and the divisor is not 1}

{allocate and initialize some temporaries}
Test := nil;
Divisor := nil;
Dividend := nil;
try
Divisor := TaaWideWord.Create;
Divisor.Assign(x);
Dividend := TaaWideWord.Create;
Dividend.Assign(Self);
Test := TaaWideWord.Create;
{after the division we shall be holding the quotient;
make sure we're zeroed out for now}

SetToZero;
{make sure most significant digit of divisor is greater
than 128; retain the multiplicative factor to do that}
Factor := Divisor.wwNormalize;
{multiply the dividend by the same factor}
if (Factor <> 1) then
Dividend.wwMultiplyByDigit(Factor);

{if the most sigdigit of the dividend is greater than or
equal to that of the divisor, increment the number of
digits in the dividend; this'll help once we jump into
the division itself}

if (Dividend.Digits^[pred(Dividend.DigitCount)] >=
Divisor.Digits^[pred(Divisor.DigitCount)]) then
inc(Dividend.FDigitCount);

{note that InxQ will be the position of the start of the
part of the dividend we're looking at; in other words
digits InxQ..InxX of the dividend form the part of the
dividend we're dividing by the divisor}

{calculate the position of the most significant digit of
both the quotient and dividend}

InxQ := Dividend.DigitCount - Divisor.DigitCount;
FDigitCount := InxQ;

InxX := Dividend.DigitCount;
{get the most significant digit of the divisor}
SigDigit := Divisor.Digits^[pred(Divisor.DigitCount)];
{while we are still calculating quotient digits...}
while InxQ >= 0 do begin
{calculate our first estimate for this quotient digit
q (it may be too large of course but the final value
will be within 2 of this)}

q := ((LongWord(Dividend.Digits^[InxX]) * 256) +
Dividend.Digits^[InxX-1]) div SigDigit;

{refine q if necessary}
if (q <> 0) then begin
{it's only a digit so force it in range}
if (q >= 256) then
q := 255;

Test.Assign(Divisor);
Test.wwMultiplyByDigit(q);
while (ComparePrim(@Dividend.Digits^[InxQ],
Test.Digits, Test.DigitCount+1) < 0) do begin
dec(q);
Test.Assign(Divisor);
Test.wwMultiplyByDigit(q);

end;
end;
{save this digit for the quotient}
Digits^[InxQ] := q;
{subtract}
if (q <> 0) then begin
SubtractPrim(@Dividend.Digits^[InxQ], Test.Digits,
Test.DigitCount+1);

end;
{we've done this digit, now do the next}
dec(InxX);
dec(InxQ);

end;
{we now have the quotient, calculate number of digits}
wwRecalcDigitCount;
{set up the remainder}
Dividend.wwRecalcDigitCount;
aRem.Assign(Dividend);
if (Factor <> 1) then
aRem.wwDivideByDigit(Factor);

finally
Divisor.Free;
Dividend.Free;
Test.Free;

end;
end;

➤ Listing 5: Wide Word division.

42 The Delphi Magazine Issue 59

until we end up with a single digit. If
this is 0, 3, 6, or 9, then the original
number was divisible by 3. For
example, let’s test 123,456,789 to
be divisible by 3. Add up the digits:
1+2+3+...+9. This is 45. Add the 4
and the 5 to make 9. This is divisi-
ble by 3 so the original number also
was (123,456,789 = 3 * 41,152,263).
Simple, huh?

To test that a binary number is
divisible by three, it’s a little more
convoluted, but still pretty simple.
Count all the set bits at the odd bit
positions. Similarly count all the
set bits at the even bit positions.
Subtract one count from the other
and if the result is divisible by 3
then the original number also was.
For example, let’s test 1100100.
Count the set bits by looking at the
first bit (we count from the right),
the third bit, the fifth bit and so on.
The bits we see are 0, 1, 0, 1, for a
count of 2. Now start at the second
bit, and look at it and the fourth bit,
the sixth bit and so on. The bits we
see are 0, 0, 1, for a total of 1. Sub-
tracting 1 from 2 gives 1, which is
not divisible by 3. Hence, 1100100
itself is not divisible by 3 (this

binary number expressed in deci-
mal is 100, so our conclusion is cor-
rect). Let’s test 1100011 by this
method. There are two counts of 2,
and subtracting one count from
the other makes 0, which is divisi-
ble by three and hence so is the
original number (which was 99 in
decimal).

We’re moving right along now.
Next? We need to calculate d. It
sounds easy: recall that d is a
number such that

(d*e) mod m = 1

where m = (p-1)*(q-1). This is
known as calculating the multipli-
cative inverse of e modulo m. Think
about it for a while with our exam-
ple numbers above, where m=396
(ie, 18*22) and e=17. One method
with these small numbers would
be to test all possible values of d
(there are only 395 of them for our
example) until we found one that
worked. There’s another theorem
that tells us that this search will
succeed because e is prime and
doesn’t divide m. But, with RSA, m
is going to be a 512-bit or 155-digit
number! Not only will you be able
to make a cuppa coffee doing a lot
of those kinds of divisions, you

would also be able to grow the
coffee bush from a seed, reap the
harvest and roast your own beans.
There must be a better way, and so
it proves with Euclid coming to our
rescue this time with Euclid’s
extended algorithm (sorry, there’s
no way I can show why this works
in an article!).

At this point, we can publish our
public key and lock away our
secret key. (By the way, the stan-
dard method of publishing an RSA
key is to use the ASN.1 format,
which is also beyond the scope of
this article: see the internet docu-
ment RFC 2459 for details.)

Encryption Methodology
We still need to discuss how to
encrypt and decrypt arbitrary
messages, although we know the
methodology in principle. I won’t
be going to the full code details,
but essentially the process goes
like this. We split the original mes-
sage into blocks, each block
having 53 bytes (or maybe less).
We then pad these 53 bytes to 64
bytes by adding some extra bytes
onto the beginning. The reason for
this is to make the encryption
more secure and to obviate certain
types of attack. The first padding

function TaaWideWord.wwIsWitness(
a, NMinus1 : TaaWideWord) : boolean;

var
d : TaaWideWord;
Rem : TaaWideWord;
x : TaaWideWord;
i : integer;

begin
{allocate temporaries}
d := nil;
x := nil;
Rem := nil;
try
d := TaaWideWord.Create;
x := TaaWideWord.Create;
Rem := TaaWideWord.Create;
d.Assign(1);
{we're going to be calculating a^(n-1) mod n by the
square and multiply method}
for i := pred(NMinus1.BitCount) downto 0 do begin
x.Assign(d);
d.Multiply(d);
d.Divide(Self, Rem);
if (Rem.DigitCount > Self.DigitCount) then
writeln('error');

d.Assign(Rem);
if d.IsOne then begin
if (not x.IsOne) and
(x.Compare(NMinus1) <> 0) then begin
Result := true;
Exit;

end;
end;
if NMinus1.GetBit(i) then begin
d.Multiply(a);
d.Divide(Self, Rem);
if (Rem.DigitCount > Self.DigitCount) then
writeln('error');

d.Assign(Rem);
end;

end;
Result := not d.IsOne;

finally

d.Free;
x.Free;
Rem.Free;

end;
end;
function TaaWideWord.IsPrime : boolean;
var
a : TaaWideWord;
NMinus1 : TaaWideWord;
TestNum : integer;
i : integer;

begin
{allocate temporaries}
a := nil;
NMinus1 := nil;
try
a := TaaWideWord.Create;
NMinus1 := TaaWideWord.Create;
NMinus1.Assign(Self);
NMinus1.SubOne;
{test PrimeTestCount times}
for TestNum := 1 to PrimeTestCount do begin
{set a to a random number between 1 and ourselves}
repeat
a.SetToZero;
a.FDigitCount := Random(DigitCount) + 1;
for i := 0 to pred(a.DigitCount) do
a.Digits^[i] := Random(256);

a.wwRecalcDigitCount;
until (not a.IsZero) and (Compare(a) > 0);
if wwIsWitness(a, NMinus1) then begin
Result := false;
Exit;

end;
end;
Result := true;

finally
a.Free;
NMinus1.Free;

end;
end;

➤ Listing 6: Testing a
Wide Word to be prime.

July 2000 The Delphi Magazine 43

byte is $00. The next padding byte
is $00, $01 or $02 and is known as
the block type. We’ll discuss what
the values mean in a moment. We
then have at least eight bytes
known as the padding string. The
values of the bytes in the padding
string depend on the block type
value. Then we have a single $00
byte, followed immediately by the
at most 53 bytes in our message
block. We thus have a 64-byte
block that looks like

<$00><BT><PS><$00><data>

where BT is the block type and PS
the padding string.

If the block type is $00, the pad-
ding string consists of at least eight
$00 bytes. If the block type is $01,
the padding string is at least eight
$FF bytes. Otherwise the padding
string consists of at least eight
random non-zero bytes. The
choice of which to use is the
encryptor’s, he or she can use dif-
ferent block types for different
blocks, or use the same one
throughout. We’ll see that the
decryptor can work out what’s
going on. The final block of the
message is likely to be less than 53
bytes, of course, and the block
type to choose is $01 or $02. In this
case the padding string must be
more than eight bytes.

There are a couple of comments
to make about this seemingly
bizarre way to make up a 64-byte
block. The first one is that you
don’t have to have 53 bytes of your
data in each 64-byte block: you can
have less if you want (indeed the
final block almost certainly does
have less), but you cannot have
more. Notice that there is no
explicit length of data value in the
64-byte block. The decryptor must
be able to determine this from the
block itself. With block type $00
this could be difficult; after all with
this block type, all of the padding
bytes turn out to be $00 and if the
data part of the block starts off
with $00 bytes we’ll have difficulty
determining where the padding
stops and the data begins. With the
other two block types we know
that we’ll see a $00 byte at the end
of the padding bytes and that’s just

before the data. So, in general, we
only use block type $00 with
53-byte blocks and never use it
with the final block, or we only use
block types $01 and $02.

Making the first byte $00 means
that the 512-bit number formed
from the 64-byte block is guaran-
teed to be less than n, our modulus
(we’ll swing it so that this initial
byte is going to be the most
significant byte in the number).
This is a requirement of the RSA
mathematical algorithm.

For block type $02, it’s good to
use different random streams
every time we encrypt something.
This makes it more difficult for the
attacker to try and find similar
encodings for similar messages.

Once we have our 64-byte block,
we convert it into a 512-bit number
(of which the most significant eight
bits are guaranteed to be zero),
raise it to the power of 3, modulus
n. We then take the 512-bit result
and convert it back into a 64-byte
block, which we can output. The
original message, when encrypted,
thus grows in size: the encrypted
size is going to be ((original size +
52) div 53) * 64 bytes.

And the decryptor? Well, he
does the reverse operation of
course. He divides up the
encrypted message into 64-byte
blocks. For each block, he converts
it into a 512-bit number. He then
raises that number to the power d
(his private exponent), modulus n.
The resulting 512-bit number is
then converted back into a 64-byte
block. He then starts to read the
bytes in the block from the start,
trying to extract the data. The first
byte must be zero (if not, there’s an
error: either the public key used to
encrypt the message was the
wrong one, or the secret key he’s
using is wrong). The second byte
must be zero, 1 or 2 (if not, an error
occurred). For 2, he then scans
until he reaches a zero byte and the
data is the remaining part of the
block that he can output. For block
type 1, he must scan $FF bytes until
he reaches a zero byte, and the
data is formed from the remaining
bytes (if there is a non $FF byte
before the zero byte, there’s an
error). For block type $00, he must

scan nine further $00 bytes and the
data is the remaining part of the
block (if those nine bytes are not
zero, there’s an error).

Conclusions
A quick note on security is in
order. Breaking the RSA algorithm
is understood to be equivalent to
factoring the modulus n into its
two prime factors p and q (once we
have these values, we can easily
work out d). This is mathemati-
cally hard: there is no simple way
to establish the factors of a very
large number, especially when it is
known that there are two and the
two are of the same magnitude.
Current research and algorithms
have made it possible to factor
100-digit numbers in a ‘reasonable’
amount of time. Factoring 155-digit
moduli (such as this article’s
512-bit modulus) can be done, but
it would take an inordinate amount
of time and computing power.

On a completely unrelated note,
RSA is a patented algorithm and
the patent expires on 20th Septem-
ber 2000.

And that’s it. I’m bushed and I
can imagine you are too. From a
simple enough request: ‘explain
the RSA algorithm’, we’ve skirted
traditional modulo arithmetic,
implemented Wide Word arithme-
tic operations, learned how to test
numbers to be prime, saw the
quick way of checking for
divisibility by 3, and finally looked
at how to encrypt and decrypt
message blocks using RSA.

Next month, it’s going to be
much easier all round. I’m going to
review some readers’ messages
that were sent to me and answer-
ing them. And, at long last, I shall
be deciding who won January’s
competition (something I’ve been
promising for a while).

Julian Bucknall has had it with
arithmetic, especially division.
Long live calculators! His email is
julianb@turbopower.com

The code that accompanies this
article is freeware and can be used
as-is in your own applications.
© Julian M Bucknall, 2000

	Public Key Encryption
	Simple RSA Example
	Easy Exponentiation
	Wide Word Arithmetic
	Finding Primes
	Calculating Exponents
	Encryption Methodology
	Conclusions

